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In this study, the influence of phonon dispersion approximation on the prediction of in-plane and out-of-
plane thermal conductivity of thin films and nanowires is shown. Results obtained using the famous Hol-
land dispersion approximation and the Brillouin zone boundary condition (BZBC) dispersion curves are
compared. For (in-plane and out-of-plane) thermal conductivity predictions based on BZBC dispersion
curves, new relaxation time parameters fitted from experimental data of bulk silicon thermal conductiv-
ity are reported. The in-plane thermal conductivity of nanostructures (films of thicknesses 20 nm,
100 nm, and 420 nm and nanowires of widths 22 nm, 37 nm, and 100 nm) in the temperature range
20–1000 K is calculated from the modified bulk thermal conductivity model by scaling the bulk phonon
mean free path (MFP) by the Fuch–Sondheimer factor of boundary scattering developed for nanostruc-
tures with rectangular cross-section. The pseudo out-of-plane thermal conductivity of films of thick-
nesses 20 nm, 100 nm, and 420 nm and in the temperature range 150–1000 K is calculated from the
solution of the Boltzmann transport equation (BTE) for phonons by using the Discrete ordinate method
(DOM), and the Monte Carlo (MC) simulation. In order to confirm the current results, the calculated
in-plane thermal conductivity of silicon thin films and silicon nanowires are compared with existing
experimental data. Moreover, due to lack of experimental and theoretical data of out-of-plane thermal
conductivity of thin films, comparison of the DOM and MC simulation is performed. The current work
shows that a drastic simplification of dispersion curves can lead to wrong prediction of both in-plane
and out-of-plane thermal conductivities of nanostructures, especially for ultra thin nanostructures
and/or at high temperatures. Comparison with experimental data of in-plane thermal conductivity of sil-
icon thin films and silicon nanowires proves that more refined dispersion approximation such as the
BZBC is well adequate for phonon transport calculations when confinement has negligible effect. More-
over, the comparison between the thermal conductivity in the out-of-plane direction and that in the in-
plane direction enables one to quantify the anisotropy of thermal conductivity of the film.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Heat conduction in dielectric and semiconductor nanostruc-
tures is a critical issue in the design of electronic devices and pack-
ages. Depending on material properties, when the material size is
comparable or smaller than the Mean free path (MFP) of phonons,
the usual macroscale heat conduction equation known as Fourier
law is questionable. In this case, the heat transport can be well
modeled by the Boltzmann transport equation (BTE) for phonons
[1] and the Molecular dynamics (MD) simulation [2–5]. Particu-
larly, the study of in-plane thermal conductivity of thin films and
nanowires, and the out-of-plane thermal conductivity of thin films
attracts great interest as it is discussed just below.

The in-plane thermal conductivity of silicon thin films and
nanowires has been studied since ten years ago and now, experi-
ll rights reserved.

Baillis).
mental data and predictions results of in-plane thermal conductiv-
ity are available. Asheghi and co-workers [6,7] have developed
experimental devices based on a Joule heating and electrical-resis-
tance thermometry to measure thermal conductivity along thin
films of thicknesses ranging from 20 nm to 3 lm and for tempera-
tures in the range 20–500 K. A similar experimental device has
been developed by Li et al. [8] to measure the thermal conductivity
along silicon nanowires of width from 22 nm to 115 nm and over
the temperature range from 20 K to 320 K. The most useful theo-
retical model is based on the famous Holland’s model of bulk ther-
mal conductivity [9] in which corrections of the bulk phonon
relaxation time due to boundary scattering are applied [6,7,10–
12]. Other approaches, more complex but more general, have been
used to calculate the in-plane conductivity of silicon thin films and
nanowires. They consist (i) to solve numerically the BTE for pho-
nons by using either the Structured finite volume method [13],
the Discrete ordinate method (DOM) [14], or the Lattice Boltzmann
method [15]; (ii) to simulate stochastically phonon transport using
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Nomenclature

a lattice parameter, m
B relaxation time parameter
C phonon heat capacity, J K�1

D phonon density of states per unit volume, m�3

d distance, m
d0 sample characteristic size in Eq. (14), m
dX elementary solid angle, sr
F scaling factor of the intrinsic mean free path due to

boundary scattering or Fuch–Sondheimer factor
F0, FB constants in Eqs. (14) and (25), respectively
f fractional concentration of species in Eq. (16)
G reciprocal lattice wave vector, m�1

h height of the cross-section S, m
⁄ Planck’s constant divided by 2p, Js rad�1

I phonon intensity, W m�1 sr�1

K number of bands to discretize the frequency space
k thermal conductivity, W m�1 K�1

kB Boltzmann’s constant, J K�1

Kn Knudsen number
L path length in Eqs. (25) and (26)
‘ dimension of film in the out-of-plane direction, m
M atomic mass, kg
N number of directions of Gaussian quadrature
p specular probability parameter
Q heat or phonon flux, W
q heat flux per unit surface, W m�2

S sample cross-section, m2

T temperature, K
Vi, V0 volume of the cell i, average volume, respectively, m3

vs, vg, vp average velocity, group velocity, phase velocity, respec-
tively, m s�1

w width of the cross-section S, m, or angular weight of
Gaussian quadrature

Greek symbols
D vector characterizing the phonon direction
U scattering phase function
g surface roughness of nanostructures, m

j wave number or wave vector, m�1

K mean free path, m
k wavelength, m
l cosine of the angle between the phonon direction and

the out-of-plane direction of nanostructure
H angle between the phonon direction and the in-plane

direction of nanostructure, rad
h polar angle, rad
r scattering coefficient, m�1

s relaxation time, s
x angular frequency, rad s�1

n random number uniformly distributed between 0 and 1

Subscripts
B boundary scattering or BZBC dispersion model
H Holland dispersion approximation
I impurity scattering
in in-plane thermal conductivity
int intrinsic scattering in bulk material
‘ boundary at the abscise y = ‘
m value of frequency or wave number at the boundary of

the first Brillouin zone
min, max lower and upper limit of the Fuch-Sondheimer factor F
N normal process
new new point of phonon interaction
out out-of-plane thermal conductivity
sc corrected mean free path or relaxation time due to

boundary scattering
0 low frequency phonons or boundary at the abscise y = 0
1/2 frequency at wave number at the middle of the first

Brillouin zone
3ph three-phonon scattering process

Superscripts
0 equilibrium intensity
* dimensionless quantity
+ phonons emitted from an element
� phonons absorbed at an element
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the MC simulation [16–19]; or (iii) to solve the atom motion equa-
tions using the MD simulation [2,4,5].

While the thermal conductivity measurement in the in-plane
direction of thin films has been carried out successfully, that in
the out-of-plane direction of thin films still not performed, may
be due to experimental challenges. Therefore, the modeling ap-
pears the most suitable approach to determine the out-of-plane
thermal conductivity of nanostructures. Nevertheless, the calcula-
tions of out-of-plane thermal conductivity of nanostructures are
rare in literature. The reported data are mainly obtained from the
MD simulation [3–5].

In previous calculations of in-plane thermal conductivity of
nanostructures, various phonon dispersion models have been usu-
ally used with the Holland’s phonon relaxation times. However, the
boundary scattering parameter has been often adjusted so that a
globally good agreement between the calculations and measure-
ments was noted. For example, for the identical silicon thin films
mentioned just above, specular reflection probability at bound-
aries, namely p, equal to 0, 0.4, and 0.6 have been considered in ref-
erences [7,19,13,16,17], respectively.

Usually, theoretical approaches except for the MD simulation
use phonon dispersion curves and relaxation times as input data.
Concerning the phonon dispersion curves, the Holland’s approxi-
mation [6,7,10] and more refined approximations based on exper-
imental data [16,17,20] such as the Brillouin zone boundary
condition (BZBC) model are the most adopted. The relaxation time
formulations suggested by Holland have been usually considered
for crystalline materials such as silicon and germanium. These re-
cent years, investigations have pointed out the influence of phonon
dispersion approximation on the thermal conductivity prediction.
Chung et al. [20] compared the calculated bulk thermal conductiv-
ities of germanium obtained from different dispersion curve
approximations while considering the Holland’s formulations of
relaxation times. They showed that for each phonon dispersion
model, the parameters of Holland’s relaxation times should be cor-
rected to predict accurately the bulk thermal conductivity. Mingo
et al. calculated the in-plane thermal conductivity of silicon and
germanium nanowires using the so-called ‘‘atomistic model” that
uses the nanowire dispersion relations [21]. Their results have
been compared against experimental data of silicon nanowires of
different widths [8]. Moreover, calculation based on the famous
Callaway model of thermal conductivity that uses a single and
effective linear dispersion relation [9] and the Holland model of
thermal conductivity that separates the contribution of longitudi-
nal and transverse phonon modes and semi-linear dispersion
curves [9] are also reported in Mingo et al. works. It was noted
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by these authors that the calculations based on the Callaway and
Holland thermal conductivity models could unable to predict
thermal conductivity of nanowires without adjusting the phonon
dispersion and relaxation time parameters from thermal conduc-
tivity measurements of nanowires.

The modification of acoustic phonon spectrum, in ultra-thin
free-standing films or nanowires can lead to changes in the phonon
group velocity, density of states, and phonon relaxation rates. This
effect is called phonon confinement. It has been shown in reference
[21] that for thin films and nanowire of characteristic size greater
than 20–30 nm the confinement has negligible effect on the heat
transport. Indeed a good agreement between calculation from pho-
non dispersion of bulk material and from phonon dispersion of
nanostructure accounting for phonon confinement can be observed
in these cases. For engineering computations and when the modi-
fication of phonon dispersion curves due to confinement has neg-
ligible effect on the heat transport (as it is generally the case in
thin films and nanowires of characteristic size greater than 20–
30 nm [21]), it is clear that the heat transfer models based on pho-
non dispersion curves and relaxation times of bulk material are
more straightforward than the atomistic model [21] and the MD
simulations. Therefore, in the limit of negligible confinement ef-
fect, the questions are: can calculations based on bulk phonon dis-
persion and relaxation times be predictive (i.e. can they predict
thermal conductivity of nanostructures without fitting the disper-
sion curves and the relaxation times parameters from thermal con-
ductivity measurement of these nanostructures)? What are the
deviations between thermal conductivity of nanostructured mate-
rials using different bulk phonon dispersion approximations?
What bulk phonon dispersion approximation is more appropriate?
Are the same conclusions valid for in-plane and out-of-plane ther-
mal conductivity calculations?

The main objective of this paper is to answer to the above
questions. Moreover, it completes previous ones of Chung et al.
[20] and Mingo et al. [21]. Recall that Chung et al. have studied
the bulk thermal conductivity and Mingo et al. are interested on
thermal conductivity of nanowires using the atomistic model.
The current study investigates the influence of phonon dispersion
approximation on thermal conductivity of silicon thin films in
both in-plane and out-of-plane directions, and that in nanowire
longitudinal direction. For in-plane thermal conductivity, we use
a model of in-plane thermal conductivity for nanostructures with
rectangular cross-section. The calculation results are compared
with experimental data of silicon thin films and silicon nanowires
reported earlier. Moreover, we propose to calculate the out-of-
plane thermal conductivity of thin films using the DOM and MC
simulation. In both methods, we account for the non-linearity of
phonon dispersion, transverse and longitudinal polarization
modes, and the phonon relaxation times dependent on frequency,
polarization and temperature. Due to lack of experimental data of
out-of-plane thermal conductivity, we compare the results from
the DOM and MC simulation each other. The comparison of
DOM and MC simulation on the out-of-plane thermal conductivity
is an original contribution of the current work. Moreover, a com-
parison between the in-plane and out-of-plane thermal conduc-
tivities of silicon films enables to investigate the thermal
conductivity anisotropy.

The paper is organized as follow: at first, the bulk thermal con-
ductivity model, the Holland and BZBC approximations of phonon
dispersion, and the formulations of phonon relaxation times are re-
called. Then, the in-plane thermal conductivity model of nano-
structures with rectangular cross-section (suitable for both thin
films and nanowires) is described. The DOM and MC method to cal-
culate the out-of-plane thermal conductivity of thin films are pre-
sented. Finally, the results of thermal conductivity in the in-plane
and out-of-plane direction of silicon thin films are discussed.
1.1. Bulk thermal conductivity

The bulk thermal conductivity, assuming an isotropic crystal
and neglecting the contributions of optical phonons, has been pre-
dicted to be of the form [9]:

k ¼ kT þ kL ð1Þ

The first term on the right hand side of Eq. (1) corresponds to the
contribution of transverse acoustic phonon modes (indexed by
‘‘T”) while the second one corresponds to the contribution of longi-
tudinal acoustic phonon mode (indexed by ‘‘L”). For bulk crystal kT

and kL can be expressed as [9,20]:

kT ¼
2
3

Z xm;T

0
CTðxÞv2

g;TðxÞsTðx; TÞdx ð2Þ

kL ¼
1
3

Z xm;L

0
CLðxÞv2

g;LðxÞsLðx; TÞdx ð3Þ

where x is the angular frequency. xm,T and xm,L are the upper lim-
its of the angular frequencies of transverse and longitudinal phonon
branches, respectively. sT and sL are the respective transverse and
longitudinal effective phonon relaxation times of phonons in the
crystal. vg,T and vg,L are the phonon group velocities of transverse
and longitudinal modes, respectively. Cj is the heat capacity per nor-
mal mode of frequency x and polarization j = T, L at temperature T,
defined by:

Cj ¼
x2kBexDjðxÞ
ðex � 1Þ2

for j ¼ T; L ð4Þ

where x = ⁄x/kBT, kB = 1.38 � 10�23 J/K is the Boltzmann’s constant,
and ⁄ = 1.054 � 10�34 Js/rad is the Planck’s constant divided by 2p.
Dj is a density of states (DOS) per unit volume of phonons of fre-
quency x and polarization mode j = T,L such as [20,22]:

DjðxÞ ¼
j2

2p2vg;j
¼ x2

2p2vg;jv2
p;j

for j ¼ T; L ð5Þ

The phonon group velocity, vg, is defined as ox/oj where j is the
wave number. The phonon phase velocity, vp, is defined as x/j.

When the scattering processes are independent, the effective
scattering relaxation times are additive according to the Mathien-
sen rule [9]:

s�1
j ¼ s�1

B;j þ s�1
I;j þ s�1

3ph;j for j ¼ T; L ð6Þ

where sB, sI, and s3ph are the usual boundary, impurity or defect,
and three-phonon relaxation times, respectively.

1.1.1. Phonon dispersion in silicon
Silicon is probably the most important electronic material to

date. Several researchers have performed studies of silicon in the
past, and as a result, its phonon dispersion characteristics are well
known. Experimental data of phonon dispersion of the acoustic
modes in the [100] crystal direction of silicon at room temperature
[23] are shown in Fig. 1. The horizontal axis is a dimensionless
wave number j* = j/jm where jm = 2p/a the wave number at
the edge of the first Brillouin zone [22,24], with a = 0.543 nm the
silicon lattice size parameter. The upper limits of the angular fre-
quencies of the phonon branches obtained from experimental data
are [22,23]:

xm;T ¼ 210kB=�h rad=s ð7Þ
xm;L ¼ 570kB=�h rad=s ð8Þ

In calculations of thermal properties (such as thermal conduc-
tivity and heat capacity), phonon dispersion curves are required.
Moreover, it is usually assumed that the first Brillouin zone is iso-
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Fig. 1. Silicon dispersion curves of acoustic phonons in the [001] crystal direction.
Solid symbols: experimental data [23]; solid lines: BZBC models.
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tropic, which means that the dispersion curves are identical in any
wave vector direction. They are usually taken equal to that in the
[100] wave vector direction.

1.1.1.1. Holland approximation. The most simple model that ac-
counts for the non-linearity of phonon dispersion and the different
polarization branches is the Holland’s model [9]. Holland separated
the contributions of T and L phonons modes, and includes a partial
effect of non-linear phonon dispersion by splitting each polariza-
tion branch into two regions at the middle of the first Brillouin
zone, i.e. at j* = 0.5. Indeed, for each polarization mode j = T, L,
the first region corresponds to frequencies and wave numbers in
the ranges 0 6x < x1/2,j and 0 6 j* < 0.5, respectively, while the
second one corresponds to frequencies and wave numbers in
the ranges x1/2,j 6x 6xj and 0.5 6 j* 6 1, respectively, where
x1/2,T = 2.47 � 10�13 rad/s and x1/2,L = 4.58 � 10�13 rad/s are
experimentally data of angular frequencies corresponding to j* =
0.5 [23].

The Holland dispersion approximation assumed that ‘‘the group
velocity and phase velocity are constant at each region and for each
polarization mode”, i.e.:

For 0 6x < x1/2,j:

vg;j ¼ v0;j ¼
5860 m=s for j ¼ T

8480 m=s for j ¼ L

�
ð9Þ

For x1/2,j 6x 6xj:

vg;j ¼
2000 m=s for j ¼ T

4240 m=s for j ¼ L

�
ð10Þ
1.1.1.2. The Brillouin zone boundary condition (BZBC) model. In order
to better reproduce the experimental phonon dispersion, polyno-
mial functions are usually used. The BZBC model introduced by
Chung et al. [20] uses low order polynomial; thus, it is chosen in
this study. A quadratic wave number dependence for L-phonons
and a cubic wave number dependence for T-phonons are used
and both satisfy the first Brillouin zone boundary conditions such
as:

jj ¼ 0 for x ¼ 0
@jj=@x ¼ 1=vg;j ¼ 0 for x ¼ 0
x ¼ xm;j for j ¼ jm

8><
>: j ¼ T; L ð11Þ

The BZBC phonon dispersion relations as function of the re-
duced wave number are:
For longitudinal (L) phonon branch:

x ¼ v0;Ljmj� þ ðxL � v0;Ljmj�Þ2 ð12Þ

For transverse (T) phonon branches:

x ¼ v0;Tjmj� þ ð3xT � 2v0;TjmÞj�
2 þ ðv0;T � 2xTÞj�

3 ð13Þ

The phonon dispersion curves deduced from BZBC model [Eqs.
(12) and (13)] are also showed in Fig. 1. It can be seen that BZBC
curves match reasonably well experimental data overall the first
Brillouin zone.

1.1.2. Scattering relaxation times
1.1.2.1. Boundary scattering. Boundary scattering refers to scatter-
ing of phonons with material boundaries. The phonon relaxation
time due to the boundary scattering in bulk material can be given
by [9]:

s�1
B;j ðxÞ ¼

vg;jðxÞ
F0d0

for j ¼ T; L ð14Þ

where F0 is a constant that account for both the finite length to
thickness ratio and the smoothness of the surface. d0 ¼ 2

ffiffiffiffiffiffiffiffi
S=p

p
is

the sample characteristic size of cross-section area S.

1.1.2.2. Impurity scattering. The heat transport is sensitive to de-
fects and impurities, which include the isotopic content of an
otherwise pure crystal. The phonon wavelengths are larger than
the impurities typical size. Indeed the typical phonon wavelength
are in the nm range whereas the defects are in the angström range.
The Rayleigh regime is then applicable. Therefore, the scattering
time is inversely proportional to the frequency^4. The impurity
(or defect) relaxation time can be expressed as follow in according
to the Rayleigh regime in the radiation theory [9]:

s�1
I;j ¼ BI;jðxÞx4 for j ¼ T; L ð15Þ

with:

BI;jðxÞ ¼ V0

P
ifi½1� ðMi=MÞ�2

4pvg;jðxÞv2
p;jðxÞ

for j ¼ T; L ð16Þ

where V0 is the average volume of a unit cell, fi is the fractional con-
centration of species i, Mi is the atomic mass of species i of average
atomic mass M.

1.1.2.3. Three phonon scattering. At temperature smaller than the
Debye temperature, the main types of phonon–phonon scattering
are the three-phonon processes. They include the reversible Nor-
mal process, referred to N, characterized by the momentum con-
servation j1 + j2 M j3 and Umklapp process, referred to U, and
characterized by the relation j1 + j2 M j3 + G. j1, j2, and j3 are
the wave vectors of phonons undergoing to the process and G is
a reciprocal lattice wave vector [22,24]. Note that both processes
conserve energy during the collision.

The study of three-phonon scattering has attracted much atten-
tion and several more or less complex formulations are suggested
[9,25,26]. Nevertheless, in each case, there is at least one unknown
parameter that requires fitting from mechanical and/or thermo-
physical property measurements. Holland [9] summarized the
most useful formulations where the contributions of longitudinal
(L) and transverse acoustic phonons (T) are separated so that a
relaxation time is associated with each phonon polarization mode.

From Holland paper [9], the usual N and U relaxation times for
the transverse and longitudinal polarization modes are:

s�1
3ph;L ¼ s�1

N;L þ s�1
U;L ¼ BLx2T3 for N and U processes ð17Þ

s�1
3ph;T ¼ s�1

N;T þ s�1
U;T for N and U processes ð18Þ
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with:

s�1
N;Tðx; TÞ ¼

BN;TxT4; for x < x1=2;T

0; for x > x1=2;T

(
for N process ð19Þ

s�1
U;Tðx; TÞ ¼

0; for x < x1=2;T

BU;T
x2

sinhð�hx=kBTÞ for x > x1=2;T

(
for U process ð20Þ

BI, BL, BN,T, and BU,T are the called relaxation time parameters. In
practice, they, as well as, the factor F0 in Eq. (14), are determined
from a fit between theoretical and experimental thermal conductiv-
ities of bulk material over a wide temperature range [20]. Therefore,
their values depend on the model accuracy, especially on the pho-
non dispersion model as it has been shown for germanium [20].
In this study, in each dispersion approximation, the relaxation time
parameters are adjusted only from bulk thermal conductivity mea-
surement using Eqs. (1)–(3). According to Eq. (16), the impurity
parameter BI is inversely proportional to the velocity product vgv2

p

but in the Holland dispersion approximation, BI is inversely propor-
tional to v3

s (where vs is an average velocity of longitudinal and
transverse branches at low frequencies). In the BZBC dispersion
model, a more refined consideration of BI is performed. This consists
to separate the cases of longitudinal and transverse modes, and the
cases of low and high frequencies. The usual Holland relaxation
time parameters and the new relaxation time parameters associ-
ated to the BZBC dispersion model are summarized in Tables 1
and 2, respectively. Note that in the atomistically approach sug-
gested by Mingo et al. [21], the parameters of relaxation times are
also adjusted from bulk thermal conductivity data.

1.2. In-plane thermal conductivity of thin films and nanowires

1.2.1. Models of in-plane thermal conductivity
1.2.1.1. Literature review. This last decade, the theoretical study of
in-plane thermal conductivity of silicon films and silicon nano-
wires has attracted great attention thanks to the thermal conduc-
tivity measurements carried out by Asheghi and co-workers [6,7]
for silicon thin films and Li et al. [8] for silicon nanowires.

The most useful model is based on the bulk thermal conductiv-
ity formulation [Eqs. (1)–(3)] in which the bulk phonon relaxation
time s [Eqs. (2) and (3)] is substituted by a corrected relaxation
time, ssc:
Table 1
Holland’s relaxation time parameters [9].

Scattering
process

Relaxation time parameters

Boundary d0 = 0.716 cm; F0 = 0.8; and vs = 6400 m/s
Impurities or

defects
BI = 1.32 � 10�45 s�3

Three-phonon BL = 2 � 10�24 s K�3 BN,T = 9.3 � 10�13 K�3 BU,T = 5.5 � 10�18 s

Table 2
Fitted relaxation time parameters using BZBC dispersion model.

Scattering
process

Relaxation time parameters

Boundary d0 = 0.716 cm, F0 = 0.8
Impurities or

defects
BI,j(x < x1/2,LorT)
= 1.32 � 10�45 s�3

BI,L(x > x1/2,L) = 6.22 � 10�46 s�3

BI,T(x > x1/2,T) = 2.64 � 10�46 s�3

Three-phonon BL(x < x1/2,L)
= 2.0 � 10�24 s K�3

BN,T(x 6x1/2,T) = 9.3 � 10�13 K�3

and 0 elsewhere
BL(x P x1/2,L)
= 9.4 � 10�25 s K�3

BU,T(x > x1/2,T) = 1.1 � 10�18 s and 0
elsewhere
kin ¼
1
3

X
j¼L;T;T

Z xm;j

0
CjðxÞv2

g;jðxÞssc;jðx; TÞ dx ð21Þ

(m1) Prior works on electrical resistivity of metal films have shown
that the ratio between the carrier mean free path in thin metal film
and that in bulk metal can be given by the following equation
known as Fuch–Sondheimer factor F [27].

Fðp;Kint;d
�Þ ¼ 1� 3

2d�
ð1� pÞ

Z þ1

1

1
t3 �

1
t5

� �
1� expðtd�Þ

1� p expðtd�Þ
dt

ð22Þ

where d* = w/Kint with w the film thickness, p a probability of spec-
ular reflection at boundaries, and Kint the mean free path in bulk
material. This equation is derived from solution of the BTE that
models both electron and phonon transport, therefore it is suitable
not only for electrons but also for phonons.

To determine the phonon relaxation time in thin films ssc, Ashe-
ghi and co-workers [6,7] have used the famous Fuch–Sondheimer’s
factor F, i.e. Eq. (22), to scale the intrinsic phonon relaxation time in
bulk silicon such as

ssc ¼ sint � F ð23Þ

and

s�1
int ¼ s�1

I þ s�1
3ph ð24Þ

(m2) The general form of Eq. (21) that consists performing sum over
wave vector space instead of performing integral over frequency
has been suggested by Chantrenne et al. [10] to model the in-plane
thermal conductivity of silicon films and nanowires. Such sum over
the wave vector space could enable to capture the anisotropy of the
first Brillouin zone; however, these authors have assumed that the
first Brillouin zone is isotropic. In this approach, the phonon relax-
ation time in nanostructures, ssc, is governed by Eq. (6) except that
the following boundary relaxation time is used instead of the relax-
ation time given by Eq. (14):

s�1
B;j ðjÞ ¼

vgðj; jÞ
FB � LðDÞ for j ¼ T; L ð25Þ

where j refers to the wave vector, FB is a constant fitted from bulk
thermal conductivity data, therefore its value depends on phonon
dispersion model. L(D) is a path length dependent on the wave vec-
tor direction, D, according to:

LðDÞ ¼ w
sin H

ð26Þ

withH the angle between the wave directionDand the nanostructure
in-plane direction. w the thickness (for films) or the width (for wires).

(m3) Using the atomistic model, Mingo et al. [21] have pre-
dicted the in-plane thermal conductivity of silicon and germanium
nanowires. The Mingo et al.’ model is similar to Eq. (21), except
that the DOS [Eq. (5)] and the velocities vp and vg are evaluated
using the dispersion curves of the nanowire instead of that of bulk
material as it is the case in the model based on Eq. (21). An expres-
sion of the effective phonon relaxation time in nanowire, ssc, sim-
ilar to that in bulk material, i.e. given by Eq. (6), is considered with
a boundary scattering term given by Eq. (14). In the Mingo et al.’
model, the boundary scattering parameter F0 depends on the nano-
wire width and surface roughness and it has been determined from
electronic microscope analyze with values between 1 and 1.3 for
nanowires of width between 37 and 115 nm [21].

(m4) The other approaches are based on the solution of the BTE
for phonons using the DOM [1,13–15], the MC method [16–19] and
MD simulation [2–5]. In these approaches, neither the reduction
factor F nor the boundary relaxation time sB is required because
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they accounted for the boundary scattering in the boundary
condition.

Although different approaches have been suggested to model
the in-plane thermal conductivity of nanostructures, the most
practical one is undoubtedly that governed by Eqs. (21)–(24) espe-
cially when the phonon confinement has negligible effect as it is
the case in nanowires of width greater than 30 nm and in films
of thickness greater than 20 nm. In fact, the model governed by
Eqs. (21)–(24) does not require adjusting the boundary scattering
parameters (FB and F0) such it is the case in the approaches (m2)
[10] and (m3) [21] because the boundary scattering can be globally
captured by the scaling factor F. Moreover, it requires considerably
less numerical effort and computation time than the DOM, MC
technique and MD simulation.

1.2.1.2. Current proposed model. Until now, derivation of the scaling
factor F for nanostructures with rectangular cross-section has been
made to calculate electrical resistivity of metallic wires [28]. We
suggest applying it for in-plane thermal conductivity calculation
for both thin films and nanowires.

It consists to bound the value of F as follow:

Fminðp;Kint;w; hÞ � F � Fmaxðp;Kint;w;hÞ ð27Þ

Fmin is the solution considering that a specular fraction p is assumed
at the first and second reflections on the boundaries and neglecting
all subsequent reflections. Fmax is the solution considering that a
specular fraction p is assumed at the first reflection site and the sec-
ond reflection is completely diffuse. Indeed, the impact of surface
scattering is underestimated in Fmin and overestimated in Fmax.
The explicit forms of Fmin and Fmax are recalled in the appendix
[Eqs. (A.1) and (A.2)] and for more details concerning their deriva-
tion, the reader is recommended to the original paper [28]. The va-
lue of the factor F and the absolute error associated with it can be
given by:

Fðp;Kint;w;hÞ ¼
Fmin þ Fmax

2
ð28Þ

and

DFðp;Kint;w; hÞ ¼ Fmin � Fmax ð29Þ

In Eqs. (28) and (29), w and h are the width and height of the
nanostructure, respectively. An example of the evolution of the
reduction factor F given by Eq. (28) as function of the ratio w/Kint

(where w is the thickness for films and the width for wires) is de-
picted in Fig. 2 for different values of the ratio of height to width, h/
w, of the nanostructure considering p = 0 (i.e. diffuse boundary
scattering). Also the result from the usual Fuch–Sondheimer for-
mula [Eq. (22)] for p = 0 is reported. It can be shown that no effect
of boundary scattering can be observed from w/Kint > 10. In the
other hand, the boundary scattering reduces 96–99% of the bulk
mean free path for w/Kint 6 0.01. As the height to width ratio in-
creases, the reduction factor increases. It converges to the film lim-
it [Eq. (22)] with an error less than 5% from the ratio h/w P 100 for
any w/Kint greater than 0.01. The minimal reduction factor value is
reached for square cross-section case.

In Eq. (28), F is function of the specular probability parameter p.
The value of p is usually adjusted from experimental data of ther-
mal conductivity of nanostructures. We propose to calculate it as
function of the frequency of the incident phonon and the surface
roughness according to the radiation theory. In fact, for a phonon
of angular frequency x, incident on a random rough surface of
roughness g with an angle h measured from the normal plane to
the surface, the parameter p can be expressed as [24,29]:

pðh;xÞ ¼ expð�16p3g2 cos2 h=k2Þ ð30Þ
with k ¼ 2pvp=x the phonon wavelength. It is more useful to use a
specular probability parameter independent of the phonon direc-
tion h. A usual averaging over direction of Eq. (30) can be suggested
according to radiation theory [30]:

pðxÞ ¼ 2
Z 1

0
pðh;xÞldl ð31Þ

with l = cosh.
Generally, the surface roughness of materials is very much

greater than phonon wavelength and the boundary scattering is
completely diffuse. However, the case of surface roughness compa-
rable to the wavelength may be expected for nanostructures;
hence, specular scattering may take place. Let consider the case
where the roughness is comparable to the lattice parameter a
(g � 1.5a for example). The evolution of the parameter p given by
Eq. (31) as function of the phonon angular frequency in silicon is
shown in Fig. 3 for both longitudinal (L-mode) and transverse pho-
non modes (T-mode). It can be seen that for frequency x > x1/2,T,
diffuse scattering takes place else both specular and diffuse reflec-
tion prevail.

1.3. Out-of-plane thermal conductivity of thin films

In the case of out-of-plane thermal conductivity of thin films,
the heat transport normal to the film interfaces is studied. For heat
transport across thin films, the Knudsen number (Kn = Kint/‘ where
‘ is now the film thickness in the out-of-plane direction of the film)
can be much greater or comparable to 1 in which the end effect
such as temperature shifts at boundaries may take place and there-
fore, the thermal conductivity cannot be obtained by Eqs. (1)–(3) or
Eq. (21) (since these last equations assume that the length in the
heat flux direction is infinite hence there is no temperature shifts
at boundaries). It is then necessary to solve the BTE for phonons.

Majumdar [1] has shown that in the microscale regime (Kn � 1),
the heat transport by lattice vibrations or phonons can be analyzed
as radiative transfer problem. Based on Boltzmann transport the-
ory, an equation of phonon radiative transfer (EPRT) is developed.
For steady-state regime and one-dimensional system, the EPRT can
be written as [1]:

l @Ix
@y
¼ I0

x � Ix
Kint

ð32Þ

where l is the cosine of the angle between the phonon propagation
direction and the y direction, which is perpendicular to the film sur-
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faces, Ix is the spectral phonon intensity at the abscise y and prop-
agates along the direction characterized by l, I0

x is the phonon
intensity at equilibrium, x is the frequency, and Kint = vgsint is the
mean free path between intrinsic scattering in which sint and vg

are the intrinsic phonon relaxation time given by Eq. (24) and the
phonon group velocity, respectively.

With the advent of modern high-speed computers, it is now
possible to solve the BTE in its most general form. However, lim-
ited progress has been made in the area of solution of the BTE
for phonons, i.e. Eq. (32). Works performed by Majumdar [1], Chen
and Tien [31], Goodson [32], Chen [33], Pilon and Katika [34] have
presented solution strategies but neglecting the non-linear phonon
dispersion and the dual polarizations of phonon propagation. In
their works, a single average polarization branch is used instead
of the dual polarizations of phonons. Recently, more complete ana-
lyzes taking into account the non-linear phonon dispersion and the
two states of polarization modes were performed by Mazumder
and Majumdar using the Monte Carlo method [16] and Naruman-
chi et al. using Unstructured modified Structured finite volume
method [13]. In these cases the Holland’s relaxation time formula-
tions and parameters were used.

In the current work, we use the Discrete ordinate method
(DOM) to solve the BTE for phonons. Compared to previous works
using the DOM, the current one accounts for: (i) the dual polariza-
tions of phonon propagation and non-linear dispersion relation-
ships; (ii) individual treatment of various scattering mechanisms;
(iii) the relaxation times dependent on frequency, polarization,
and temperature; and (iv) the equilibrium energy condition over
all frequencies and polarizations.

As consequence of (i), the case of polarization and frequency
dependent EPRT is considered, i.e. the EPRT is solve for each state
of polarization [longitudinal (L) and transverse (T)] and for each
frequency. Moreover, (ii) implies that the usual EPRT is rewritten
to separate the term of scattering by impurities from the term of
three-phonon scattering and introducing a scattering phase func-
tion and an in-scattering term which makes EPRT exactly same
as Equation of radiative transfer (ERT). It can be noted that this for-
mulation of EPRT called generalized EPRT (GEPRT) has been used
by Prasher [35] to treat phonon transport in anisotropic scattering
particulate media. Recall that for simulation of heat conduction in
microscale regime, the non-gray treatment of phonons, i.e. the
point (iii), is crucial to obtain realistic results [13]. The last point,
i.e. (iv), means that it is possible to have non equilibrium condition
at a particular frequency.
Up to date, no experimental data of out-of-plane thermal con-
ductivity of thin films are available, certainly due to the difficulty
to perform such experiment with ultra thin films. In this work,
we suggest in more the Monte Carlo simulation to compare the re-
sults obtained from the DOM. Note that in many cases of transport
of particles, the Monte Carlo simulation has been taken usually as
method of reference.

1.3.1. Discrete ordinates method (DOM)
1.3.1.1. Governing equations. The generalized EPRT for each polari-
zation state, j = T,L and each frequency, x, is [35]:

l @Ix;j
@y
¼ rjðI0

x;j � Ix;jÞ � rI;jIx;j

þ rI;j

4p

Z
4p

UðDi;DjÞIx;jðDiÞdXi for j ¼ T; L ð33Þ

where rj = 1/(vg,js3ph,j) is called scattering coefficient related to the
three-phonon processes, rI,j = 1/(vg,jsI,j) is called scattering coeffi-
cient related to the impurity scattering, and U(Di, Dj) is the phase
function defined as the probability for an incident phonon intensity
with incident direction Di to be scattered in the direction Dj. Note
that for isotropic scattering, as it is usually assumed for impurity
scattering, U(Di, Dj) = 1. dXi is an elementary solid angle around
the direction Di. I0

x;j is the equilibrium intensity defined by:

I0
x;j ¼

1
4p

vg;j�hxDjðxÞ
expð�hx=kBTÞ � 1

ð34Þ

In Eq. (34), Dj(x) is the DOS given by Eq. (5).
The local heat flux per unit area qj(y) for each polarization state

is related to the intensity field by:

qjðyÞ ¼ 2p
Z xm;j

0

Z 1

�1
Ix;jldldx j ¼ T; L ð35Þ

where xm,j is the upper limits of the angular frequencies of polari-
zation mode j = L, T given by Eqs. (9) and (10).

The total heat flux per unit area q is the sum of transverse and
longitudinal contributions:

q ¼ qL þ 2qT ð36Þ
1.3.1.2. Boundary conditions. The boundary conditions are assumed
to be perfectly absorbing and emitting isotropically similarly to the
photon emission from a black surface [30]:

Ixðy ¼ 0Þ ¼ I0
xðT0Þ

Ixðy ¼ ‘Þ ¼ I0
xðT‘Þ

(
ð37Þ

where T0 and T‘ are the prescribed boundary temperatures.

1.3.1.3. Numerical procedure. To carried out frequency integrals in
Eqs. (33), (35), and (37), the gray per band approximation is
used. It consists to replace the frequency integral into discrete
sum of band number with uniform band width Dx. Therefore,
for the discrete frequency, xk, the scattering coefficients and
intensities are assumed to be constant within the spectral band
Dx, i.e.:

rx ¼ rk ð38Þ

Ik;jðyÞ ¼
Z xk

xk�1

Ix;jðyÞdx and I0
k;jðyÞ ¼

Z xk

xk�1

I0
x;jðyÞdx j ¼ T; L ð39Þ

The partial derivative in Eq. (33) is treated using control volume
method [36] while the angular integrals in Eqs. (33), (35), and
(37) are replaced by numerical quadratures [37] of cosine direction
ln and weight wn for n = 1, N where N is the direction number.
These points constitute the conventional discrete ordinates method.
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The solution of GEPRT [Eq. (33)] is then obtained from an itera-
tive method:

(i) For one given temperature field, the intensity for each polar-
ization mode can be calculated at every location, for a set of
discrete direction and within each frequency band. More-
over, the phonon fluxes may be evaluated by the following
quadrature formula:

qj ¼ 2p
XKj

k¼1

XN

n¼1

wnIk;n;jln j ¼ T; L ð40Þ

where Kj is the number of gray bands for the polarization mode j
and Ik,n,j is the intensity at the frequency band number k, propagat-
ing along the direction number n, and of polarization j.

(ii) Knowing phonon intensities and the total phonon heat flux,
the steady-state energy balance in the discretized form can
be used to retrieve the new temperature field T(y) at every
location:

2
XKT

k¼1

rk;T 4pI0
k;T � 2p

XN

n¼1

Ik;n;T wn

 !
þ
XKL

k¼1

rk;L 4pI0
k;L � 2p

XN

n¼1

Ik;n;Lwn

 !
¼ 0

ð41Þ

(iii) Thus, the main iterative loop within the computation algo-
rithm consists to calculate the intensity fields Ik,n,T and Ik,n,L

for one given temperature field and then updating the tem-
perature field from the energy balance [Eq. (41)] until a con-
vergence criterion on temperature field T(y) is met.

For the spectral discretization, the longitudinal frequency
interval xm,L is divided into KL = 500 gray bands of uniform band
width Dx = xm,L/KL while the transverse frequency interval xm,T

is divided into KT = KLxm,T/xm,L gray bands [19]. The spatial do-
main, i.e. the film thickness, is discretized into 300 regular
meshes. The angular space is discretized using the Gaussian quad-
rature with N = 24 directions [38]. The convergence criterion is
that the temperature difference between two successive iterations
verifies DT/T < 10�4 everywhere. Finally, the apparent out-of-
plane thermal conductivity of the film, kout, is calculated from
the relation:

kout ¼
q

jDT=Dyj ð42Þ

where q is the overall heat flux per unit surface crossing the film.
DT/Dy is the slope of the temperature field calculated from the first
and the last nodes of the spatial mesh nearest from the boundaries.
In the semi-ballistic regime, there is temperature shifts at bound-
aries and in this case DT/Dy is the slope of the temperature in the
region where temperature profile is linear. It can be noted that kout,
defined in Eq. (42), is a pseudo thermal conductivity, and should be
used carefully. It is not an intrinsic parameter as it depends on film
thickness.

To verify the good behavior of the current DOM, the out-of-
plane thermal conductivity of silicon film of thickness ‘ = 100 lm
over a large temperature range (20 K 6 T 6 1000 K) is calculated
and the result is reported in Fig. 4. It can be shown that for temper-
ature greater than 100 K for which the transport regime is com-
pletely diffusive (Kn < 0.01), the DOM solution converges well to
experimental data of bulk silicon thermal conductivity [9]. More-
over, no effect of dispersion curves model is noted in this temper-
ature range. At low temperature (T < 100 K), the ballistic transport
still prevails (Kn is about 0.1 at 60 K and 4–5 at 20 K) leading to
temperature shifts at boundaries. Hence, the DOM result deviates
from the bulk data.
1.3.2. Monte Carlo simulation
Recently, a MC algorithm to simulate steady-state phonon

transport in microscale regime has been developed by the authors
[19]. It consists to mimic numerically the guarded hot plate exper-
iment in stationary regime.

The simulation is performed on a 3D box of dimension ‘ in the
out-of-plane direction (i.e., in the y axis considered in the DOM)
and square cross-section S perpendicular to the y axis. This box
is discretized into Ncell parallelepiped cells along the y axis. For
each cell i is assigned an arbitrary temperature, Ti, which stills to
be determined. The size of cells is chosen to be smaller than the
intrinsic phonon MFP (Kint = vgsint) to ensure that there is no more
than one intrinsic scattering in a cell. The film boundaries along the
y axis behave as black walls with prescribed temperatures, respec-
tively, T0 and T‘; therefore, they can emit phonons and absorb all
incident ones. The phonon flux emitted from each black wall Q+

is divided into very large number of phonon samples. Note that
Q+ from wall i is connected to the wall temperature Ti through
Eq. (43) [19]:

Qþi ¼
S
4

X
j¼L;T;T

XKj

k¼1

vg;jðxkÞ�hxkDjðxkÞ
expð�hxk=kBTiÞ � 1

Dx i ¼ 0; ‘ ð43Þ

vg,j(xk) is the phonon group velocity at frequency band xk and
polarization mode j. In the MC technique, a large number of fre-
quency bands is required. As in the current DOM, KL = 500 and
KT = KLxm,T/xm,L are appropriate.

1.3.2.1. Algorithm. The steady-state MC algorithm is performed as
briefly described hereafter:

(s1) For each phonon sample is assigned a random position on
the boundary area, a random direction in the inward hemispherical
space, a random frequency and a random polarization mode. Then,
the method consists of tracking one by one the phonon samples
emitted from the two emitting boundaries. The phonon moves
according to a drift motion while its direction is altered when it
interacts with material imperfection such as defect, impurity, or it
is reflected by a boundary. The track of phonon is stopped when
it is absorbed at an absorbing element (boundary or cell). Each
time a phonon is absorbed, the energy of the absorbing element
is incremented by the phonon energy. After tracking all samples
emitted from boundaries, the energy absorbed (per unit time) at
each element, denoted by Q� for the boundaries and G� for the
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cells, is computed. The superscript ‘‘–” indicates that the phonons
are absorbed at the element.

(s2) From each cell, a certain number of phonons are emitted so
that the cell emitted-energy, denoted by G+, is equal to the cell ab-
sorbed-energy (energy conservation). Note that during the emis-
sion process, new (i.e. different from that of absorbed-phonons)
wave vector directions, frequencies, and polarizations are ran-
domly attributed to the emitted phonons. In this manner, the tran-
sition of frequency and polarization branches during three-phonon
processes is accounted for. These newly emitted phonons are
tracked again one by one until they are all absorbed according to
the reasons mentioned in step (s1). After this phonon tracking,
the energies absorbed at cells and walls only during this step, here-
after referred to as ‘‘energies absorbed step by step” are computed.

(s3) While the energies absorbed step by step at cells and walls
are greater than zero, they are added to the absorbed-energies (G�

for walls and Q� for cells) and the algorithm goes back to step (s2).
Since the phonons absorbed at boundaries are not reintroduced,
the total phonon number in the studied system decreases step by
step and becomes equal to zero after a certain number of steps.
In term of energy, the energies absorbed step by step at cells and
walls change with the simulation step and decrease up to zero after
a certain number of steps.

The necessary information can be extracted from the simulation
statistics. For example, the equivalent temperature of cell i, i.e. Ti, is
extracted from G�i (� Gþi at steady-state regime) through Eq. (44)
while the net energy flux crossing the boundary Q is obtained from
the absolute difference between Q� and Q+.

G�i � Vi

X
j¼L;T;T

XKp

k¼1

s�1
3ph;jðxk; TiÞDjðxkÞ�hxk

expð�hxk=kBTiÞ � 1

" #
Dx i ¼ 1;Ncell ð44Þ

where Vi is the volume of the cell i. s�1
3ph;jðxk; TiÞ is the frequency-,

polarization-, and temperature-dependent relaxation rate, defined
in Eqs. (17)–(20).

As the initial cell temperatures are unknown, the frequency dis-
tribution of phonons in the cells is not correct. Therefore, iteration
on the temperatures is required until the temperature profile is un-
changed. This consists of repeating the steps (s1) to (s3) using as
initial temperatures the latest computed temperatures. These dif-
ferent simulation steps are well detailed in our recent paper [19].

For various test cases, it is shown that only 2 or 3 temperature
iterations are required to reach the convergence [19]. Once the
simulation convergence is achieved, the out-of-plane thermal con-
ductivity, kout, can be deduced from Eq. (42) using q = Q/S as net
flux per unit surface.

The left (y = 0) and right ends (y = l) of the simulation box are
totally absorbing walls; therefore, each incident phonon is ab-
sorbed and the track of its path is stopped. The remaining bound-
aries are specular reflecting walls that enable to mimic the one-
dimensional heat transfer condition. Therefore, each incident pho-
non is reflected into the specular direction then its path continues
without energy alteration.

1.4. Results

In this work, we use Eqs. (21) and (28) to calculate the in-plane
thermal conductivity of silicon thin films (using the height to
width ratio condition h/w = 100) and silicon nanowires (consider-
ing square wire cross-section h/w = 1). Instead of fixing the value
of the specular probability parameter p commonly used in litera-
ture, its value is evaluated from Eqs. (30) and (31) considering
g = 1.5a for all silicon nanostructures. This value of g = 1.5a is fitted
from experimental measurement of thermal conductivity of nano-
structures. This parameter g corresponds to the roughness of
boundaries. For silicon thin films, the current theoretical results
are compared with experimental data of Asheghi and co-workers
[7] while for silicon nanowires, comparison of the current pro-
posed model with measurements of Li et al. [8] is performed. Also,
the results considering totally diffuse boundary scattering (i.e.
p = 0), the BZBC dispersion and the corresponding relaxation times
are shown. For thin films, results for thicknesses w equal to 20 nm,
100 nm, and 420 nm over the temperature range 20–1000 K are
shown in Fig. 5. For nanowires, results for different widths w equal
to 22 nm, 37 nm and 115 nm and temperatures in the range 20–
1000 K are depicted in Figs. 6 and 7. It can be noted that:

(i) At low temperatures (T < 30 K) where low frequency pho-
nons dominate the energy transport, the effect of dispersion
approximation is negligible because both models of disper-
sion are globally similar. Moreover, the current calculation
of in-plane thermal conductivities of thin films and nano-
wires agree well with experimental data. This tends to con-
firm that the proposed boundary scattering model using
frequency dependent specular probability parameter is
appropriate.

(ii) At high temperatures (T > 30 K), the influence of dispersion
model is more noticeable. The in-plane thermal conductivity
calculated using Holland dispersion is systematically greater
than that obtained using the BZBC dispersion model. The
largest deviation (about 75%) is observed in the case of thin-
nest nanostructures at 1000 K. The deviation between calcu-
lations using Holland and BZBC dispersion can be explained
by the fact that at higher temperatures, high frequencies
play an important role in the energy transport and in this
frequency range, the dissimilarity between the Holland
and BZBC dispersion approximations is more significant.
Due to boundary scattering, the intrinsic MFP using BZBC
dispersion is much reduced than that using the Holland dis-
persion. As result, the calculated in-plane thermal conduc-
tivity using the BZBC dispersion is smaller than that
calculated using the Holland dispersion. i.e.: kin,H>kin,B.

(iii) Except for the case of nanowire of size 22 nm (Fig. 7), glob-
ally good agreement is observed between the experimental
in-plane thermal conductivity and that predicted using the
BZBC dispersion model. That tends to show that the BZBC
dispersion model is appropriate to predict in-plane thermal
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conductivity of nanostructures. In fact, for these nanostruc-
tures, the phonon confinement is not significant, i.e. the pho-
non dispersion curves are well described using the BZBC
model. The deviation of calculations from experimental data
in the case of very thin wire (width of 22 nm) is observed.
The presence of high density of impurities not accounted
for in the models may cause this deviation but not sufficient
to explain it. Recall that previous works have evoked the
confinement effect that tends to decrease the thermal con-
ductivity beyond the boundary scattering effect [17].

(iv) The predictions at low temperatures using frequency depen-
dent specular probability parameter are globally in better
agreement with low temperature experimental data than
calculations considering identical dispersion model (BZBC)
and relaxation times and totally diffuse scattering (p = 0).
Previous works on out-of-plane thermal conductivity have
been made in the past but they are mainly focused on thick
samples where the transport regime is in the diffusion limit,
hence, the size effect (boundary scattering) and end effect
(temperature shifts at boundaries) becomes mute. Excepted
for low temperature (0.1 K 6 T 6 100 K) measurements of
thermal conductivity across silicon samples of centimeter
sizes carried out by Klitsner et al. [39], to our knowledge,
there are no experimental data of out-of-plane thermal con-
ductivity of thin film to compare with our results. Recent
molecular dynamics data [4,5] may be taken as reference
but they have been mainly focuses on very thin silicon films
(thickness about 10 of nanometers) [4] where the validity of
Boltzmann transport equation may be questionable due to
wave effect. Therefore, in this study, we focus our attention
on quantitative comparison between the MC simulation and
DOM.

A series of simulations is performed for several silicon film
thickness 20 nm, 100 nm, and 0.42 lm at different temperatures
from 150 K to 1000 K. Note that, for temperatures less than
150 K, the phonon transport is mainly ballistic for film thickness
less than several micrometers (cf. Fig. 4 for 100 lm thick silicon
film); therefore, the temperature of the entire film is nearly con-
stant with discontinuities at the two boundaries. In these cases
the concept of conductivity is questionable. Thicker films are not
investigated because the dispersion effect disappears in these
cases. Moreover, MC simulations are only carried out for tempera-
tures up to 500 K due to excessive computation time for high tem-
perature simulations. In DOM and MC calculations, the difference
in temperature between the two boundaries of the film is always
maintained at 20 K and it is assumed that the computed thermal
conductivity from the simulation is the representative thermal
conductivity at the average temperature of the film. To point out
the anisotropy of thermal conductivity, the out-of-plane thermal
conductivity is compared for the same silicon film thicknesses with
the in-plane thermal conductivity experimentally measured (for
temperatures less than 300 K) [7] and that predicted just above
using the BZBC dispersion (for temperatures greater than 300 K).
According to Fig. 8 in which comparison of results is reported,
we can see that:

(i) The solution of the BTE for phonons using DOM and the MC
simulation give globally identical results. At temperatures
lower than 200 K more significant deviation between DOM
and MC results is noted. This deviation can be attributed to
the difficulty in evaluating the temperature gradient in the
film. In fact, when the temperature gradient within the film
is small, a small error in the temperature gradient induces
high deviation on thermal conductivity. The slight deviation
of the DOM solutions from the MC results at higher temper-
ature may be attributed to the omission of transition
between polarization modes during three-phonon scattering
in the DOM. According to previous work of Mazumder and
Majumdar [16], the probability of transition of longitudinal
mode to transverse one increases with temperature; hence,
it may affect the thermal conductivity at higher
temperature.

(ii) When film thickness decreases and/or the temperature
increases, the influence of the phonon dispersion approxi-
mation becomes more noticeable. The results obtained using
Holland dispersion are greater than that obtained from the
BZBC dispersion. The reason of this deviation can be
explained in the same manner as for the case of in-plane
thermal conductivity because we can always use the concept
of reduction of intrinsic MFP due to boundary scattering.
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(iii) Both in-plane and out-of-plane thermal conductivities of the
studied films have the same order of magnitude in the con-
sidered temperature range except for the case of 20 nm thick
film and temperature lower than 200 K. For films of thick-
nesses 100 nm and 420 nm, kin is greater than kout and they
converge to the same value at 150 K. At high temperature
(T > 300 K), kout is systematically smaller than kin because
the phonon mean free path in the out-of-plane direction is
much shorter than that in the in-plane direction. In fact,
boundaries of films in the case of out-of-plane phonon trans-
port are totally absorbing, therefore they absorb all incident
phonons while the boundaries in the case of in-plane pho-
non transport are totally diffuse reflecting. For temperature
lower than 100–200 K and films of thickness 20 nm, kin

decreases with temperature (as it is shown in Fig. 5) while
kout increases with temperature. This behavior of kout is
due to the ballistic effect (i.e., there is temperature shifts
at boundaries and the temperature gradient decreases as
the temperature decreases).

This comparison between the in-plane and out-of-plane ther-
mal conductivities tends to show that there is anisotropy of ther-
mal conductivity of silicon films and it is particularly pronounced
at low temperatures and thinner films as it is expected.

2. Conclusion

Although the bulk thermal conductivity has been successfully
predicted using different approximations of phonon dispersion,
e.g. the famous Debye, Callaway, and Holland dispersion models,
there is lack of knowledge concerning their validity on the thermal
conductivity calculation of nanostructures. One of the originality of
this current work is the investigation of the influence of phonon
dispersion approximation on both in-plane and out-of-plane ther-
mal conductivities of nanostructures. The usual Holland dispersion
approximation and a more refined, straightforward, dispersion
model known Brillouin zone boundary condition (BZBC) model
are analyzed. The relaxation times are modeled by the formula-
tions suggested by Holland. For the BZBC dispersion, new relaxa-
tion time parameters fitted from bulk thermal conductivity data
are reported. Calculations of in-plane thermal conductivity of sili-
con thin films and nanowires of different sizes, over large temper-
ature interval are compared with experimental data and
simulation results reported in literature. Due to lack of experimen-
tal and theoretical data of out-of-plane thermal conductivity, the
Discrete ordinate method (DOM) and the Monte Carlo (MC) simu-
lation are compared considering silicon thin films of different
thicknesses at different temperature levels. The conclusions are
the following:

(i) The influence of phonon dispersion approximation is signif-
icant in both in-plane and out-of-plane thermal conductivity
of silicon thin films and silicon nanowires, especially for
ultra thin nanostructures and/or at high temperatures. In
these cases, calculations based on Holland dispersion
approximation overestimate thermal conductivity of nano-
structures due to drastic simplification of dispersion curves.
This confirms the previous conclusion of Mingo et al. [21] in
the case of nanowires. In the other hand, more refined dis-
persion model (compared to experimental data) such as
the BZBC dispersion is shown to be well adequate for calcu-
lation of in-plane thermal conductivity of silicon thin films
and nanowires with characteristic sizes greater than 20–
30 nm. Since, calculations based on BZBC dispersion involve
no fitting to any nanostructure measurements, they are thus
fully predictive approaches. The only fitting is the relaxation
time parameters involving only the bulk thermal conductiv-
ity measurements. Moreover, these new relaxation time
parameters are very useful for other powerful techniques
such as the solution of the Boltzmann transport equation.

(ii) The in-plane thermal conductivity model developed in this
study enables to calculate satisfactorily the thermal conduc-
tivity along silicon thin films and silicon nanowires without
recourse to more complex and time consuming methods
such as DOM, MC and molecular dynamics simulations.

(iii) The out-of-plane thermal conductivities are pseudo conduc-
tivities, depending on thickness. They are calculated using
the current DOM and MC simulation. Both prediction meth-
ods are globally in good agreement.

(iv) Finally, the anisotropy of thermal conductivity of silicon thin
films, i.e. the contrast between the in-plane and out-of-plane
thermal conductivity, is pointed out and shown to be signif-
icant at low temperatures and very thin films.

Appendix A. Explicit forms of Fmin and Fmax according to
reference [28]
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with d�1;i ¼ L1;i=Kint and d�2;i ¼ L2;i=Kint
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The definition of L1,i, L2,i and ui for i = 1 to 6 are:

L1;i ¼
L1;i
?

sin h
;
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